| 5    | (a) | Explain, in terms of heating effect, what is meant by the <i>root-mean-square (r.m.s.) value</i> of an alternating current.                                      |  |
|------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|      |     |                                                                                                                                                                  |  |
|      |     |                                                                                                                                                                  |  |
|      |     | [2]                                                                                                                                                              |  |
|      | (b) | State the relation between the peak current $I_{\rm 0}$ and the r.m.s. current $I_{\rm rms}$ of a sinusoidally-varying current.                                  |  |
|      |     | [1]                                                                                                                                                              |  |
|      | (c) | The value of a direct current and the peak value of a sinusoidal alternating current are equal.                                                                  |  |
|      |     | (i) Determine the ratio                                                                                                                                          |  |
|      |     | power dissipation in a resistor of resistance <i>R</i> by the direct current power dissipation in the resistor of resistance <i>R</i> by the alternating current |  |
|      |     |                                                                                                                                                                  |  |
|      |     |                                                                                                                                                                  |  |
|      |     |                                                                                                                                                                  |  |
|      |     |                                                                                                                                                                  |  |
|      |     |                                                                                                                                                                  |  |
|      |     | ratio =[2]                                                                                                                                                       |  |
| (ii) |     | ate one advantage and one disadvantage of the use of alternating rather than ect current in the home.                                                            |  |
|      | ad  | vantage                                                                                                                                                          |  |
|      |     |                                                                                                                                                                  |  |
|      | dis | advantage                                                                                                                                                        |  |
|      | -   | [2]                                                                                                                                                              |  |

(d) A current I varies with time t as shown in Fig. 5.1.

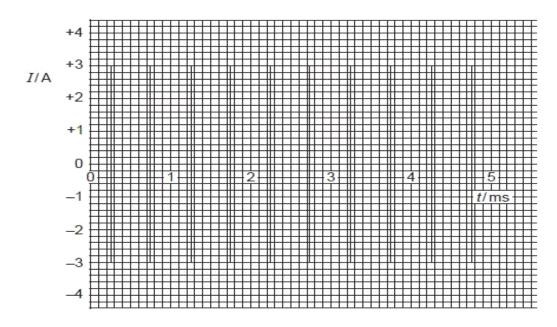



Fig. 5.1

For this varying current, state

(i) the peak value,

peak value = ..... A [1]

(ii) the r.m.s. value.

r.m.s. value = ..... A [1]

Q2.

4 An ideal transformer has 5000 turns on its primary coil. It is to be used to convert a mains supply of 230V r.m.s. to an alternating voltage having a peak value of 9.0V.

(a) Calculate the number of turns on the secondary coil.

number = .....[3]

(b) The output from the transformer is to be full-wave rectified. Fig. 4.1 shows part of the rectifier circuit.

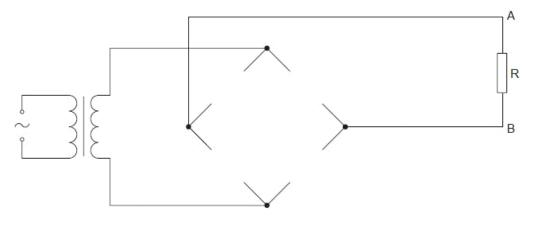



Fig. 4.1

On Fig. 4.1, draw

- (i) diode symbols to complete the diagram of the rectifier such that terminal A of the resistor R is positive with respect to terminal B, [2]
- (ii) the symbol for a capacitor connected to provide smoothing of the potential difference across the resistor R. [1]

(c) Fig. 4.2 shows the variation with time t of the smoothed potential difference V across the resistor R.

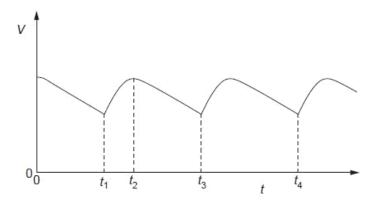



Fig. 4.2

(i) State the interval of time during which the capacitor is being charged from the transformer.

from time ...... to time ............ [1]

(ii) The resistance of the resistor R is doubled. On Fig. 4.2, sketch the variation with time t of the potential difference V across the resistor.
[2] Us

## Q3.

6 A student is asked to design a circuit by which a direct voltage of peak value 9.0 V is obtained from a 240 V alternating supply.

Exar

The student uses a transformer that may be considered to be ideal and a bridge rectifier incorporating four ideal diodes.

The partially completed circuit diagram is shown in Fig. 6.1.

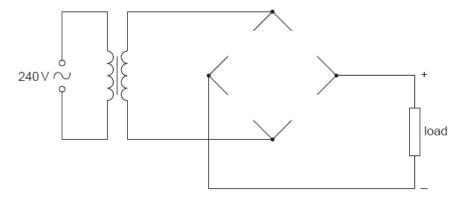



Fig. 6.1

- (a) On Fig. 6.1, draw symbols for the four diodes so as to produce the polarity across the load as shown on the diagram. [2]
- (b) Calculate the ratio

number of turns on the secondary coil number of turns on the primary coil

|         | E/O | v |
|---------|-----|---|
| ratio = | [3  | ε |
|         |     |   |

| 7   | (a)  | Explain what is meant by the <i>root-mean-square</i> (r.m.s.) value of an alternating voltage.                          |
|-----|------|-------------------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                         |
|     |      |                                                                                                                         |
|     |      | [2]                                                                                                                     |
|     | (b)  | An alternating voltage V is represented by the equation                                                                 |
|     |      | $V = 220 \sin(120\pi t),$                                                                                               |
|     |      | where V is measured in volts and t is in seconds.                                                                       |
|     |      | For this alternating voltage, determine                                                                                 |
|     |      | (i) the peak voltage,                                                                                                   |
|     |      | peak voltage = V [1]                                                                                                    |
|     |      | (ii) the r.m.s. voltage,                                                                                                |
|     |      | r.m.s. voltage = V [1]                                                                                                  |
|     |      | (iii) the frequency.                                                                                                    |
|     |      | frequency = Hz [1]                                                                                                      |
| (c) |      | alternating voltage in <b>(b)</b> is applied across a resistor such that the mean power ut from the resistor is 1.5 kW. |
|     | Calc | ulate the resistance of the resistor.                                                                                   |
|     |      |                                                                                                                         |
|     |      |                                                                                                                         |
|     |      |                                                                                                                         |
|     |      |                                                                                                                         |
|     |      |                                                                                                                         |
|     |      |                                                                                                                         |
|     |      | resistance = $\Omega$ [2]                                                                                               |

Use Faraday's law to explain why the potential difference across the load and the

e.m.f. of the supply are not in phase.

| (c) |      | etrical energy is usually transmitted using alternating current. Suggest why the smission is achieved using |
|-----|------|-------------------------------------------------------------------------------------------------------------|
|     | (i)  | high voltages,                                                                                              |
|     |      |                                                                                                             |
|     |      |                                                                                                             |
|     |      | [2]                                                                                                         |
|     | (ii) | alternating current.                                                                                        |
|     |      |                                                                                                             |
|     |      | [1]                                                                                                         |

Q6.

6 An alternating current supply is connected in series with a resistor R, as shown in Fig. 6.1.

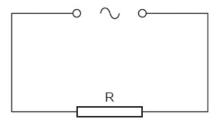



Fig. 6.1

The variation with time t (measured in seconds) of the current I (measured in amps) in the resistor is given by the expression

 $I = 9.9\sin(380t)$ .

|     | (a) For the current in the resistor R, determine |                                              |              |
|-----|--------------------------------------------------|----------------------------------------------|--------------|
|     | (i) the frequency,                               |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  | frequency =Hz [                              | 2]           |
|     | (ii) the r.m.s. current.                         |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  | r.m.s. current = A [                         | 2]           |
|     |                                                  |                                              |              |
| (b) | To prevent over-heating, the mean p 400W.        | ower dissipated in resistor R must not excee | d For Examin |
|     | Calculate the minimum resistance of F            | ₹.                                           | Use          |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  |                                              |              |
|     |                                                  | resistance = $\Omega$ [2                     | 2]           |
|     |                                                  |                                              |              |

A sinusoidal alternating voltage supply is connected to a bridge rectifier consisting of four ideal diodes. The output of the rectifier is connected to a resistor R and a capacitor C as shown in Fig. 6.1.

For Examin Use

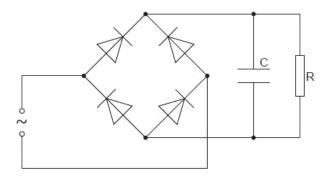
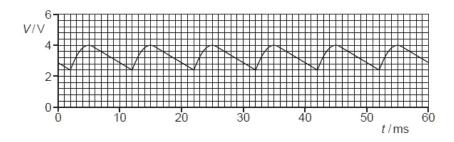




Fig. 6.1

The function of C is to provide some smoothing to the potential difference across R. The variation with time t of the potential difference V across the resistor R is shown in Fig. 6.2.



- (a) Use Fig. 6.2 to determine, for the alternating supply,
  - (i) the peak voltage,

(ii) the root-mean-square (r.m.s.) voltage,

|     | (iii) | the frequency. Show your working.                                                                                    |            |
|-----|-------|----------------------------------------------------------------------------------------------------------------------|------------|
|     |       |                                                                                                                      |            |
|     |       |                                                                                                                      |            |
|     |       |                                                                                                                      |            |
|     |       |                                                                                                                      |            |
|     |       | frequency = Hz [2                                                                                                    | <u>}</u> ] |
| (b) |       | e capacitor C has capacitance 5.0 μF.<br>a single discharge of the capacitor through the resistor R, use Fig. 6.2 to |            |
|     | (i)   | determine the change in potential difference,                                                                        |            |
|     |       |                                                                                                                      |            |
|     |       | change = V [1                                                                                                        | ]          |
| (   | ii) d | etermine the change in charge on each plate of the capacitor,                                                        |            |
|     |       |                                                                                                                      |            |
|     |       |                                                                                                                      |            |
|     |       |                                                                                                                      |            |
|     |       |                                                                                                                      |            |
|     |       | change = C [2]                                                                                                       |            |
| (i  | ii) s | how that the average current in the resistor is 1.1 × 10 <sup>-3</sup> A.                                            |            |
|     |       |                                                                                                                      |            |
|     |       |                                                                                                                      |            |
|     |       |                                                                                                                      |            |
|     |       |                                                                                                                      |            |
|     |       | [2]                                                                                                                  |            |
|     |       |                                                                                                                      |            |

Ex

| (c) | Use Fig. 6.2 and the value of the current given in <b>(b)(iii)</b> to estimate the resistance of resistor R. | Exa |
|-----|--------------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                              |     |
|     |                                                                                                              |     |
|     |                                                                                                              |     |
|     |                                                                                                              |     |
|     |                                                                                                              |     |

resistance =  $\Omega$  [2]

Q8.

6 A simple transformer is illustrated in Fig. 6.1.

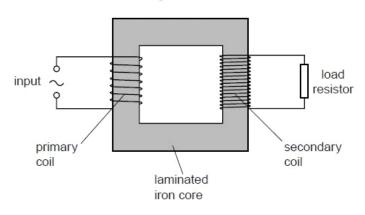



Fig. 6.1

- (a) State
  - (i) why the iron core is laminated,



|     | (ii) | what is meant by an ideal transformer.                                              |
|-----|------|-------------------------------------------------------------------------------------|
|     |      |                                                                                     |
|     |      | [1]                                                                                 |
| (b) | An   | ideal transformer has 300 turns on the primary coil and 8100 turns on the secondary |
|     |      | e root-mean-square input voltage to the primary coil is 9.0 V.                      |
|     | Cal  | culate the peak voltage across the load resistor connected to the secondary coil.   |
|     |      |                                                                                     |
|     |      |                                                                                     |
|     |      |                                                                                     |
|     |      |                                                                                     |
|     |      |                                                                                     |
|     |      | peak voltage = V [2]                                                                |

Q9.

For Examine

(b) The output of an ideal transformer is connected to a bridge rectifier, as shown in Fig. 6.1.

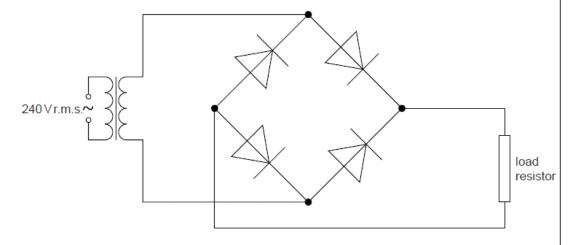



Fig. 6.1

The input to the transformer is 240  $\forall$  r.m.s. and the **maximum** potential difference across the load resistor is 9.0  $\forall$ .

- (i) On Fig. 6.1, mark with the letter P the positive output from the rectifier. [1]
- (ii) Calculate the ratio

number of turns on primary coil number of turns on secondary coil

(c) The variation with time *t* of the potential difference *V* across the load resistor in (b) is shown in Fig. 6.2.

For Examine Use

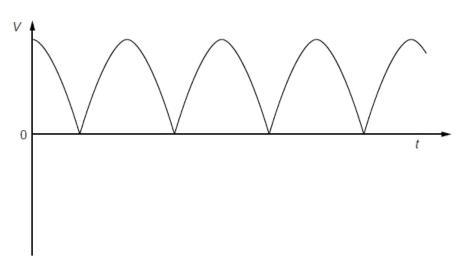



Fig. 6.2

A capacitor is now connected in parallel with the load resistor to produce some smoothing.

| (i) | Explain what is meant by <i>smoothing</i> . |  |  |  |  |
|-----|---------------------------------------------|--|--|--|--|
|     |                                             |  |  |  |  |
|     | [1]                                         |  |  |  |  |

(ii) On Fig. 6.2, draw the variation with time *t* of the smoothed output potential difference. [2]

## Q10.

4 The rectified output of a sinusoidal signal generator is connected across a resistor R of resistance 1.5 k, as shown in Fig. 4.1.



Fig. 4.1

The variation with time t of the potential difference V across  $\mathbf{R}$  is shown in Fig. 4.2.

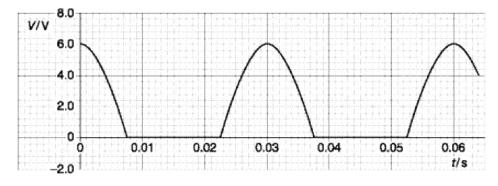



Fig. 4.2

| (a) | State how the rectification shown in Fig. 4.2 may be achieved. |  |  |  |  |
|-----|----------------------------------------------------------------|--|--|--|--|
|     |                                                                |  |  |  |  |
|     | [2]                                                            |  |  |  |  |

**(b)** A capacitor is now connected in parallel with the resistor **R**. The resulting variation with time *t* of the potential difference *V* across **R** is shown in Fig. 4.3.

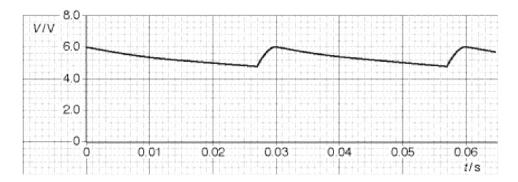



Fig. 4.3

- (i) Using Fig. 4.3, determine
  - 1. the mean potential difference across the resistor R,

| potential di | ifference = |  | ٧ | 1 |
|--------------|-------------|--|---|---|
|--------------|-------------|--|---|---|

2. the mean current in the resistor,

the time in each cycle during which the capacitor discharges through the resistor.

| (ii) | Usi | ng your answers in (i), calculate   |                                              |
|------|-----|-------------------------------------|----------------------------------------------|
|      | 1.  | the charge passing through the res  | istor during one discharge of the capacitor, |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     | charge = C                                   |
|      |     |                                     | onargo –                                     |
|      |     | 2. the capacitance of the capacitor | r.                                           |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     |                                              |
|      |     |                                     | capacitance = F [4]                          |

(c) A second capacitor is now connected in parallel with the resistor R and the first capacitor. On Fig. 4.3, draw a line to show the variation with time t of the potential

use

[1]

Q11.

difference V across the resistor.

6 An alternating supply of frequency 50 Hz and having an output of 6.0 V r.m.s. is to be rectified so as to provide direct current for a resistor R. The circuit of Fig. 6.1 is used.

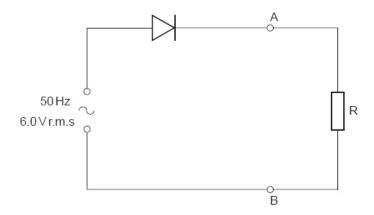



Fig. 6.1

The diode is ideal. The Y-plates of a cathode-ray oscilloscope (c.r.o.) are connected between points A and B.

(a) (i) Calculate the maximum potential difference across the diode during one cycle.

potential difference = ...... V [2]

(ii) State the potential difference across R when the diode has maximum potential difference across it. Give a reason for your answer.

[1]

(b) The Y-plate sensitivity of the c.r.o. is set at  $2.0\,\mathrm{V\,cm^{-1}}$  and the time-base at  $5.0\,\mathrm{ms\,cm^{-1}}$ .

[3]

[1]

On Fig. 6.2, draw the waveform that is seen on the screen of the c.r.o.

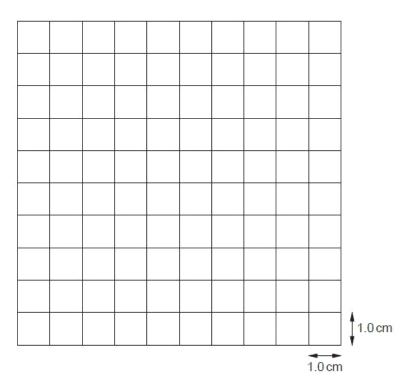



Fig. 6.2

- (c) A capacitor of capacitance 180 µF is connected into the circuit to provide smoothing of the potential difference across the resistor R.
  - (i) On Fig. 6.1, show the position of the capacitor in the circuit.
  - (ii) Calculate the energy stored in the fully-charged capacitor.

Examiner's Use

(iii) During discharge, the potential difference across the capacitor falls to  $0.43\,V_0$ , where  $V_0$  is the maximum potential difference across the capacitor.

Calculate the fraction of the total energy that remains in the capacitor after the discharge.

fraction = .....[2]

## Q12.

6 A simple iron-cored transformer is illustrated in Fig. 6.1.

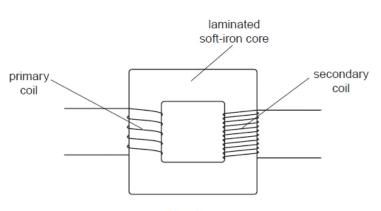



Fig. 6.1

- (a) Suggest why the core is
  - (i) a continuous loop,



|     | (ii) | laminated.                                                                                            |                   |
|-----|------|-------------------------------------------------------------------------------------------------------|-------------------|
|     |      |                                                                                                       |                   |
|     |      |                                                                                                       |                   |
|     |      | [2]                                                                                                   |                   |
| (b) | (i)  | State Faraday's law of electromagnetic induction.                                                     |                   |
|     |      |                                                                                                       |                   |
|     |      |                                                                                                       |                   |
|     |      | [2]                                                                                                   |                   |
|     | (ii) | Use Faraday's law to explain the operation of the transformer.                                        |                   |
|     |      |                                                                                                       |                   |
|     |      |                                                                                                       |                   |
|     |      |                                                                                                       |                   |
|     |      | [3]                                                                                                   |                   |
| (c) |      | ate two advantages of the use of alternating voltages for the transmission and use of ctrical energy. | Fc<br>Exami<br>Us |
|     | 1    |                                                                                                       |                   |
|     |      |                                                                                                       |                   |
|     | 2    |                                                                                                       |                   |
|     |      | [2]                                                                                                   |                   |
|     |      |                                                                                                       | I                 |

Q13.

(a) Suggest one advantage of full-wave rectification as compared with half-wave rectification.

(b) The rectification is produced using the circuit of Fig. 7.1.

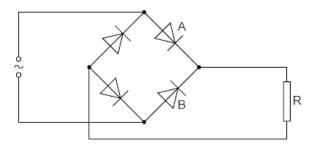



Fig. 7.1

All the diodes may be considered to be ideal.

The variation with time t of the alternating voltage applied to the circuit is shown in Fig. 7.2 and in Fig. 7.3.

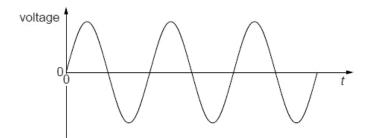



Fig. 7.2

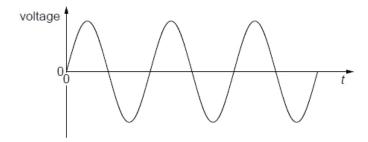



Fig. 7.3

- (i) On the axes of Fig. 7.2, draw a graph to show the variation with time t of the potential difference across diode A. [1]
- For Examiner's Use
- (ii) On the axes of Fig. 7.3, draw a graph to show the variation with time t of the potential difference across diode B.
- (c) (i) On Fig. 7.1, draw the symbol for a capacitor, connected into the circuit so as to provide smoothing.
  [1]
  - (ii) Fig. 7.4 shows the variation with time *t* of the smoothed potential difference across the resistor R in Fig. 7.1.

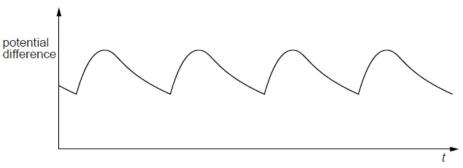



Fig. 7.4

State how the amount of smoothing may be increased.

[1]

On Fig. 7.4, draw the variation with time t of the potential difference across resistor R for increased smoothing.

Q14.

6 A simple iron-cored transformer is illustrated in Fig. 6.1.

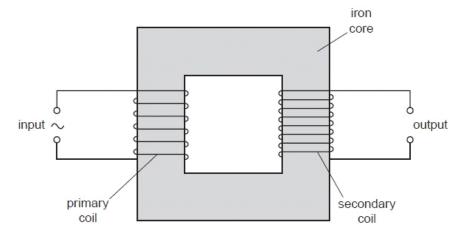



Fig. 6.1

| State why the primary and secondary coils are wound on a core made of iron. |   |  |  |
|-----------------------------------------------------------------------------|---|--|--|
|                                                                             | 2 |  |  |
|                                                                             | - |  |  |
| [1                                                                          | ] |  |  |

| (ii) | Suggest why thermal energy is generated in the core when the transformer is in use. |
|------|-------------------------------------------------------------------------------------|
|      |                                                                                     |
|      |                                                                                     |
|      |                                                                                     |
|      | [3]                                                                                 |

| (b) | The root-mean-square (r.m.s.) voltage and current in the primary coil are V <sub>p</sub> and I respectively. The r.m.s. voltage and current in the secondary coil are V <sub>S</sub> and I <sub>S</sub> respectively. |                                                                                                                        |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
|     | (i)                                                                                                                                                                                                                   | Explain, by reference to direct current, what is meant by the <i>root-mean-square</i> value of an alternating current. |  |  |
|     |                                                                                                                                                                                                                       |                                                                                                                        |  |  |

(ii) Show that, for an ideal transformer,

$$\frac{V_{\rm S}}{V_{\rm P}} = \frac{I_{\rm P}}{I_{\rm S}}.$$

[2]

Q15.



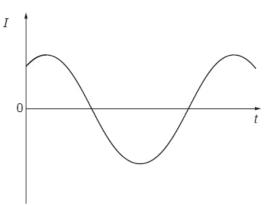



Fig. 6.1

The variation of the current with time is sinusoidal.

- (a) Explain why, although the current is not in one direction only, power is converted in the resistor.
- (b) Using the relation between root-mean-square (r.m.s.) current and peak current, deduce the value of the ratio

average power converted in the resistor maximum power converted in the resistor

ratio = ......[3]

For Examir Use

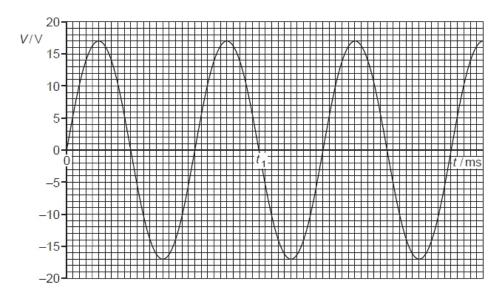



Fig. 6.1

- (a) Use Fig. 6.1 to state
  - (i) the time  $t_1$ ,

$$t_1 = \dots s [2]$$

(ii) the peak value  $V_0$  of the voltage,

$$V_0 = \dots \lor [1]$$

(iii) the root-mean-square voltage  $V_{\rm rms}$ ,

(iv) the mean voltage  $\langle V \rangle$ .

| (b)  | Calculate the mean power dissipated in the resistor. |                                                                                                                                   |                   |  |  |  |
|------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
|      |                                                      | IM FOL                                                                                                                            |                   |  |  |  |
|      |                                                      | power = W [2]                                                                                                                     |                   |  |  |  |
| Q17. |                                                      |                                                                                                                                   |                   |  |  |  |
| 5    | The                                                  | components for a bridge rectifier are shown in Fig. 5.1.                                                                          | For               |  |  |  |
|      |                                                      | supply ~ load                                                                                                                     | Examiner's<br>Use |  |  |  |
|      |                                                      | Fig. 5.1                                                                                                                          |                   |  |  |  |
|      | (a)                                                  | Complete the circuit of Fig. 5.1 by showing the connections of the supply and of the load to the diodes. [2]                      |                   |  |  |  |
|      | (b)                                                  | Suggest one advantage of the use of a bridge rectifier, rather than a single diode, for the rectification of alternating current. |                   |  |  |  |
|      |                                                      | [1]                                                                                                                               |                   |  |  |  |
|      | (c)                                                  | State                                                                                                                             |                   |  |  |  |
|      |                                                      | (i) what is meant by smoothing,                                                                                                   |                   |  |  |  |

Q18.

6 A bridge rectifier consists of four ideal diodes A, B, C and D, connected as shown in Fig. 6.1.

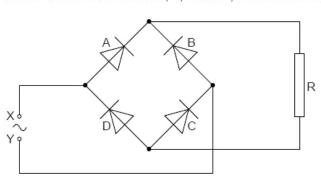



Fig. 6.1

An alternating supply is applied between the terminals X and Y.

- (a) (i) On Fig. 6.1, label the positive (+) connection to the load resistor R. [1]
  - (ii) State which diodes are conducting when terminal Y of the supply is positive.

diode .....[1]

For Examin **(b)** The variation with time *t* of the potential difference *V* across the load resistor R is shown in Fig. 6.2.

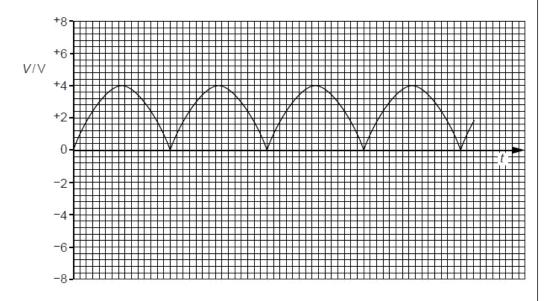



Fig. 6.2

The load resistor R has resistance 2700 Ω.

(i) Use Fig. 6.2 to determine the mean power dissipated in the resistor R.

Fo Exami Us

- (ii) On Fig. 6.1, draw the symbol for a capacitor, connected so as to increase the mean power dissipated in the resistor R. [1]
- (c) The capacitor in (b)(ii) is now removed from the circuit. The diode A in Fig. 6.1 stops functioning, so that it now has infinite resistance.

On Fig. 6.2, draw the variation with time t of the new potential difference across the resistor R. [2]

| 7   | (a)                                                                                                                  | The | he mean value of an alternating current is zero. |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------|--|--|--|--|--|
|     |                                                                                                                      | Exp | olain                                            |  |  |  |  |  |
|     | (i) why an alternating current gives rise to a heating effect in a resistor,                                         |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     | [2]                                              |  |  |  |  |  |
|     | (ii) by reference to heating effect, what is meant by the root-mean-square (r.m.s.) value<br>an alternating current. |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     |                                                  |  |  |  |  |  |
|     | [2]                                                                                                                  |     |                                                  |  |  |  |  |  |
| (b) | (b) A simple iron-cored transformer is illustrated in Fig. 7.1.  primary coil secondary coil                         |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     |                                                  |  |  |  |  |  |
|     | iron core                                                                                                            |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     |                                                  |  |  |  |  |  |
|     | (i) State Faraday's law of electromagnetic induction.                                                                |     |                                                  |  |  |  |  |  |
|     |                                                                                                                      |     |                                                  |  |  |  |  |  |

.....[2]

| (ii) | Use Faraday's law to explain why the current in the primary coil is not in phase with the e.m.f. induced in the secondary coil. |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|      |                                                                                                                                 |  |  |  |  |
|      |                                                                                                                                 |  |  |  |  |
|      |                                                                                                                                 |  |  |  |  |
|      |                                                                                                                                 |  |  |  |  |
|      | [3]                                                                                                                             |  |  |  |  |